

Table of Contents
List of figures/tables/symbols/definitions 1

1 Introduction 2

1.1 Acknowledgement 2

1.2 Problem and Project Statement 2

1.3 Operational Environment 3

1.4 Intended Users and uses 3

1.5 Assumptions and Limitations 3

1.6 Expected End Product and Deliverables 3

2. Specifications and Analysis 4

2.1 Proposed Design 4

2.2 Design Analysis 6

3​. ​Testing and Implementation 7

3.1 Interface Specifications 7

3.2 Hardware and software 7

3.3 Functional Testing 7

3.4 Non-​Functional Testing 8

3.5 Process 8

3.6 Result 9

4 Closing Material 9

4.1 Conclusion 9

4.2 References 9

 ​4.3 Appendices ​10

SDDEC19-09 1

List of figures/tables/symbols/definitions (​This should be the similar to the
project plan)

Figure 1. Design Flow Diagram for the tool

Figure 2. Workflow Diagram

Table 1. Example output of the program

1 Introduction

1.1 ACKNOWLEDGEMENT

We are thankful and excited to be assigned this project with Collins Aerospace. Specifically we
would like to thank Andy Zobro, Branden Lange, and Kirsten Dawes for their continued help,
resources and guidance. We hope to fulfill their needs and deliver a final product to help with their
lasting success.

We would also like to thank Srikanta Tirthapura. His support and guidance will be very valuable in
the coming months as we prepare to deliver an outstanding product to Collins Aerospace. Finally,
we would like to thank all teaching assistants in this process, as much of it is volunteered time, it is
greatly appreciated.

1.2 PROBLEM AND PROJECT STATEMENT

Problem Statement:

Collins Aerospace currently has a growing set of disparate test procedures across multiple
programs coming from common requirements/test cases. So there are instances where they have
the exact same program with the same functions in different locations of their repository, however
there may be small variations to those functions in which have been fixes in the past. Currently
their engineers are unaware of any fixes and must work on their single program fixing each issue
themselves. They would like us to build a desktop application that will search through the
directory and find the best option given a specific function/program name.

Project Statement:

Our proposed solution to this problem comes in two parts. The first part being a data
aggregation tool to search through the Collins Aerospace SVN directory and identify copies of a
program, given a signature by the Collins engineer. The tool will collect data on each of the copies
which will include a path, platform, time stamp and status of the function (pass/fail/crash). That
way they will know exactly where and how to find the correct program given the feedback. The
second part of our solution, the feedback/output, will be visualization of these results which will be
shown below. It will include a table table containing all of the different copies of the inputted
signature, cross-checking them with the different tests ran on them to display which would be the
best program to use. So given one input of a signature, the application will output a table

SDDEC19-09 2

displaying test results on each copy to save the engineer time fixing problems that have already
been fixed by another engineer previously.

1.3 OPERATIONAL ENVIRONMENT

The product will be a desktop application (written in Python) that will strictly be run on Collins
Aerospace systems. This is to ensure that no data is seen outside of Collins employees. Their
systems use Windows OS, so there isn’t any difficulties with the desktop application.

1.4 INTENDED USERS AND USES

– To properly design an end product that will provide the maximum satisfaction and perform in the
most efficient manner, it is essential to understand the end user and the associated end uses.

The only user of this product will be Collins Aerospace Engineer. Along with that, as stated above,
the single use of the product is a visual displaying the recommended program they should be using
given a signature as input.

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions

● Mock Test Data will be sufficient to build application - Collins Aerospace is unable to give
us the true data from their SQL servers to keep it private, so they will give us a mock data
set to work with which will imitate a real set.

● This application will only run on a Collins Aerospace system, even for development and
testing.

Limitations

● As stated above, we are only able to get a sample data set to work with, however it should
be sufficient enough to build the application and work with the true data.

● We must work on the development at the ISU Research Park, there they will provide a
Collins Aerospace laptop to work off of. We may code on our own devices, but all data will
be stored on that laptop.

● We may need a Collins Aerospace employee present in order to gain access to the laptop,
so we will need to work around all of our schedules to do so.

● There are no costs associated with this device, unless Collins Aerospace decides to provide
a private repository to work off of.

1.6 EXPECTED END PRODUCT AND DELIVERABLES

The delivered product will be a desktop application that the developers at Collins Aerospace will
run on their systems by Collins engineers. Although developed in two different parts, data
aggregation and visualization, they will both be included in the delivered desktop application. The
application will mine given data and return a graph to determine the best test file to work with,

SDDEC19-09 3

which will save a lot of time and increase productivity. This product needs to be delivered in
December 2019.

We will also need to deliver all related documents such as design, code and architecture documents
in order for them to continue to build off of this application in the future if they wish. The delivery
date will be December 2019.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

Design Specification

Below is a flow diagram of our project design. Our test files will be located in Collins SVN
repository, that is where we will get them to aggregate the data using our application. We will also
be aggregating test result data from “STARWARS”. The application will be storing the test and each
one’s performance and in return our tool will be able to display the results back to the user using
data visualization tools. The data will be shown in form of graphs showing performance of each
test over time and their consistency and there will be reports that could be downloaded.

Figure 1. Design Flow Diagram for the tool

Data Visualization

The table below shows our main visualization for the report that will be the end product of our
program according to the functional requirement. Depending on the signature provided by our
user, the program will show the comparison against the other versions from different programs and
show the result of the test and time of the test. P represents pass, C represents crash, and F
represents fail. Depending on the status, the percentage is displayed.

SDDEC19-09 4

 Week

Sig % Program 1 2 3 4 1 2 7 8 9 10 11 12 13 14 15 16

A1XHD

100

A P P P

B P P P P P P P

C P F P P

D P

BD4AO

95

A C C F C

F C P

G C P

C489H

80

E P

D P C C C

Table 1. Example output of the program

Data Structure

As per our functional requirement, the data structure will be a key-value pair represented in
spatial-temporal way. It will represent the hierarchy of the test values and link each key signature
to the attribute values. For example:

linkage: { nodeId, inLinks: (1,2,3), outLinks: (7) }

It is still on the discussion on whether to use relational SQL database or NoSQL as the data
structure would be key-value pair. NoSQL would require more coding and be flexible to store the
datas compared to SQL. However, as the test results are fixed, using relational SQL database may
improve the performance and reduce the complexity in coding.

In the case of using NoSQL, the option would be either to use MongoDB or Cassandra as those are
widely used and known for key-value pair data storage. In the other case of using relational SQL
database, the option would be to use MySQL as most of the teammates are familiar with it. In the
current situation, we are leaning more towards using the MongoDB.

Test Result Attributes

1. Test instance: the test instance will have the path to the file, file name, and function name.
It will be achieved by recursively iterating through the repository path and parsing the
python files.

2. Platform: it will show whether or not it is in the host or target.
3. Status: as mentioned above, it will show if it passed, failed, or crashed.
4. Degree of failure: will be determined from the STARWARS("Software Test Archive and

Reporting With user Authentication and Registration Support") database result.
5. Timestamp: will show when did the test run.
6. Number of runs: will show how many times the test was ran.

SDDEC19-09 5

2.2 DESIGN ANALYSIS

What we have done:​ We have no real design implemented at the moment. Instead, we have been
discussing with our clients about the layers and flows of the design of how everything should work
with each other.

For this project, we separated it into 2 parts, back-end, and front-end. The team on the back-end
will be working on data aggregation, while the front-end will be working on data visualization.

Back-end:​ This part of the project is greatly involved with databases and algorithm, which will be
extremely challenging for us while we are still trying to figure a good data model to adapt with. The
back-end will be developing a tool that will mine data from multiple data sources and make data
relationships from the aggregated data.

One of their data sources is “Subversion” A.K.A “SVN” an open source control system, which
currently has more than 80 in branches that contain .py test files, and “STARWARS” which contain
the “Test Run Data” for each .py test files. In order to extract those “test data”, we have to
implement a recursive iteration through the repository path in the SVN and identify all programs in
the path and all branches in the program. With the given “path URL + File Name + Function Name”
we will be able to get the test instance of every test file from STARWARS. Each test instance stores
historical results of the test file, and we will make use of those aggregated test results and function
names to make relationships for data visualization.

Each path in the SVN leads to a test file. Each test file is a python file which has a file name, and a
function implemented in it. The whole function code will be hashed to create a “signature” and
stored in a new database system along with other attributes that will be cover in this section. The
function that has the same name could have multiple versions throughout the SVN. Before the
function code is being hashed, we have to design a code that will remove comments in the code,
line indentation, spacing, and etc without affecting the functionality of the original code. Each of
this function code could occur multiple times in different programs and branches in the SVN, our
clients called it “flavors” for the different versions of the function code. After obtaining the flavor of
the current test file it will be stored in a database with its path URL, the file name, function name,
function signature, program, and branch. This process will keep repeating until all test files are
covered in the SVN and stored in a new database system.

Front-End: ​The front-end will be mainly developing a tool that will help our client to visualize
relationships from the aggregated data. There will be no complicated computations happening on
the front-end, therefore we have come up with a solution by using a client-server model with
Socket API to communicate between both ends for data transmission. The reason we chose Socket
API is that we could benefit from the TCP protocol, this should work well because we should expect
more than multiple users using the same application and no data should be lost with an in-ordered
delivery to the front-end. Besides, the front-end will be receiving fetched results from the database
and will be able to generate a visualization e.g. (graphs/report) as mention in 2.1 proposed design.

Strengths: ​The strength of our design is that multiple users will be able to use its functionality on
different devices that are installed with the front-end application. The back-end would most likely
be running on a server which would help to mitigate running low on CPU units.

SDDEC19-09 6

Weakness: ​The weakness of the design could be complexity. The complexity of the system is really
difficult to implement as the final product will be dealing with 8000 test files, and this will be an
issue because we will mostly be working on a set of fabricated data that will be provided by our
client.

3 Testing and Implementation

3.1 INTERFACE SPECIFICATIONS

Hardware Interface: We will not have any hardware interface as the project is fully software-based.

Software Interface: The main interface would be Python. Interface for connecting front-end and
back-end development would be Socket API. To test the connection, we will use Postman. As the
product would be a desktop application, we would possibly use WinAppDriver which is a free
automation tool for Windows desktop apps developed by Microsoft.

3.2 HARDWARE AND SOFTWARE

There will be no hardware used for this project. The only physical hardware that will be using are
computers installed/running with the software application.

Software: The software of this application should be able to run in the latest Windows operating
system. The software application should be able to communicate with multiple data sources and
gather the required information. The software application will be design to aggregate data and
display a data visualization. The data visualization includes showing historical data results of a test,
give a better recommendation of a test, and relationships between multiple tests in a graph/table
format.

3.3 FUNCTIONAL TESTING

For unit testing, we will create specific test to check the coverage of our code against the given .py
files. The more coverage we get will ultimately determine the best test which will be used in our
phase two of determining the best test and later in giving them out as suggestions. We will also use
the coverage.py package to better test our code coverage

Integration testing will be carried out later in the process after our unit testing has proven to be
successful. We will then proceed to test our tool’s interaction with the existing Tests at Collins
Aerospace. The tool’s installation and overall integration in the Collins system will not be a
problem since the tool will be an application that gets installed on the computer.

System testing and Acceptance testing will be carried out by our client, and some of Collins
engineers since they will be our only users. This process will come after the first two phases of
testing.

SDDEC19-09 7

3.4 NON-FUNCTIONAL TESTING

Our criteria for performance testing will be making sure that the tool is able to analyze all tests. We
will be using the Locust framework for testing the tool’s performance, with Locust we will be
writing performance scripts

Regarding security, we do not have to worry about our tool being corrupted since it will only be
used in house at Collins aerospace. Even in development, we will only be able to test the data on a
Collins computer and our repository will be private and only accessible to us and our client.

For usability, this tool will be simple with simple features that will make is user friendly, as shown
before, it will show performances of each test in a neat table. Later on we will look into the
possibility of making suggestions about tests. For our usability testing we will be testing again our
requirements and making sure that it is consistent. We will be running our tool on several of the
Collins computers as well as getting feedback from the client.

For the compatibility testing, we will be making sure that the tool we will have developed, is
compatible with Collins systems, we will be using Python 3 and since it is what the Collins
engineers use currently, we will have to just make sure that our windows application is compatible
with their systems.

3.5 PROCESS

Workflow

1. The input will be a problematic test.
2. The program will analyze and compare the input test against the test with same name to

report on all variations of the test, based on the code signatures.
3. Report will be generated as an output to show the comparison against other versions of the

test and other programs’ test results history for the same test name.
4. Rapid and intelligent data-driven changes will be applied to the artifacts.

Figure 2. Workflow Diagram

SDDEC19-09 8

3.6 RESULTS

No testing results has been obtain at the moment, testing results will be able to obtain during the
implementation of the system.

Front-end: None

Back-end: None

4 Closing Material

4.1 CONCLUSION

To this date, our team has just received access into the Collins Aerospace systems at the ISU
Research Park. We have a project plan in place including the specific software libraries we will be
using, along with our design diagrams to build off of.

Our goal of this project is to deliver a desktop application to Collins Aerospace that, given a
signature input from an engineer, will output a suggested program for them to use. This will save
them a lot of time fixing mistakes in their files that have already been fixed by another engineer.
To achieve this product, we will have a two-part system, data aggregation (back-end) and the
visualization of the data (front-end). The aggregation will mine through multiple data sources in
order to receive a specific and unique signature, which is given by a “file name + function name”.
Along with each signature will be a sample of “test data”, which shows how well that function is ran
for a given test. The visualization side will then take all copies of a given signature, and create a
table in order to see how each different copy compares with the tests ran on them. There weren’t
too many possibilities of solutions, as it is a single use case, however it is a large one at that. They
had experimented with the idea of completely reconstructing their database, however with 50
engineers and over 8000 files, that would just make more of a mess than necessary. This is also a
product that they are able to build off of, possibly automate. While working on a program, it would
make a note that their are better options to be using, saving themselves even more time. This
product is to be delivered to Collins Aerospace by December 2019.

4.2 REFERENCES

Docs.python.org. (2019). socket — Low-level networking interface — Python 3.7.3 documentation.
[online] Available at: https://docs.python.org/3/library/socket.html [Accessed 26 Mar. 2019].

EDUCBA. (2019). MySQL vs NoSQL - Which One Is More Useful (With Infographics). [online]
Available at: https://www.educba.com/mysql-vs-nosql/ [Accessed 26 Mar. 2019].

Bushnev, Yuri. “JMeter vs. Locust - Which One Should You Choose?” ​BlazeMeter​, BlazeMeter, 17
Oct. 2017, www.blazemeter.com/blog/jmeter-vs-locust-which-one-should-you-choose.

SDDEC19-09 9

4.3 APPENDICES

Socket API manual: ​https://docs.python.org/3/library/socket.html

Locust Documentation:​ ​https://docs.locust.io/en/stable/

Coverage.py Documentation: ​https://coverage.readthedocs.io/en/v4.5.x/

SDDEC19-09 10

https://docs.python.org/3/library/socket.html
https://docs.locust.io/en/stable/
https://coverage.readthedocs.io/en/v4.5.x/

